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In this paper a new algorithm for robustness analysis of uncertain parametric systems is
proposed. The algorithm adopts a probabilistic approach to find a multidimensional region
in the uncertainty parameter space where a system satisfies a given property. In particu-
lar it finds a (suboptimal) maximum volume hyper-rectangle in which the given system’s
property is satisfied with a pre-assigned confidence. The algorithm has been applied for
the robustness analysis of the Italian Aerospace Research Centre’s unmanned space vehicle
demonstrator’s maneuverability. The use of the algorithm during the design phase of the
project lowered the effort spent in aerodynamic wind tunnel testing on specific coefficients
that did not require the reduction of the uncertainty ranges. Moreover the algorithm has
been used for estimating the flying test bed’s initial state displacement compatible with a safe
mission execution to support online launch decisions. Effectiveness of the proposed method
in terms of computational efficiency and reliability has been demonstrated by comparing
the results with a deterministic method that finds the actual region in the uncertainty space
where the system properties are verified. The proposed algorithm allows the computational
burden of robustness analysis to be drastically reduced, particularly when the number of
uncertain parameters is greater than three.

Nomenclature
CD drag coefficient
CL lift coefficient
Cm pitching moment coefficient
f (q) multivariate probability density function
l dimension of uncertain parameter space
M Mach number
N number of random samples
p0, q0,r0 initial angular velocities, deg/s
q vector of uncertain parameters
Q uncertain parameter space
Qgood subset of uncertainty space Q in which a given property is satisfied
Q

opt
fin probabilistic estimate of the maximum volume hyper-rectangle included in Qgood
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Q
opt
true maximum volume hyper-rectangle probabilistically included in Qgood

Q
opt
0 maximum volume hyper-rectangle probabilistically included in Qgood and

having the same shape of Q

Qε subset of uncertainty space Q in which a given property is satisfied with
probability greater than 1-ε

rmax(ε) probabilistic robustness margin
Re Reynolds number
u(q) generic function of uncertain parameters q

umax worst-case value of the function u(q)

uN estimate of worst-case value of the function u(q)

α angle of attack, deg
γ performance level
�CD uncertainty on drag coefficient
�CL uncertainty on lift coefficient
�Cm uncertainty on pitching moment coefficient
�xcg uncertainties on the Center of Gravity x-position, m
�zcg uncertainties on the Center of Gravity z-position, m
δ confidence of probabilistic estimate
δe elevons deflection, deg
ε accuracy of probabilistic estimate
θ0 initial pitch angle, deg
φ0 initial roll angle, deg
ψ0 initial heading angle, deg

I. Introduction

ITALIAN Aerospace Research Centre (CIRA) is conducting an aerospace national research program named USV
(unmanned space vehicle), whose main objective is designing and manufacturing unmanned flying test beds (FTB),

conceived as multimission flying laboratories, to test and verify innovative materials, aerodynamic methods, advanced
guidance, navigation and control functionalities, and critical operational aspects peculiar of the future reusable launch
vehicle (RLV) and aerospace plane. A problem of paramount importance to be dealt with during the USV project
development phases was the analysis of the uncertainties characterizing FTB1 system (the first experimental FTB
of USV project). In fact, a common problem that arises during the design phase of a system, and when verifying the
control performance and stability robustness, is to assess system compliance with a set of predefined requirements in
the presence of some process parametric uncertainties ranging in given subsets. This problem is particularly important
and challenging when the final system performs safety critical functions, as in aerospace vehicles [1] and nuclear or
chemical plants application areas. In many cases, especially during early stages of a design process, it can be useful to
estimate the uncertainty ranges that still satisfy a requirement. In this way critical design parameters (which require
the reduction of the uncertainty ranges) can be identified [2] and the detailed design activities and the uncertainty
refinement process can be optimally planned to obtain, at the end of the implementation process, uncertainty ranges
that still allow requirements compliance. The above stated problem is peculiar to USV project because the parametric
uncertainties, mainly the aerodynamics ones, are significantly large. USV missions are, in fact, designed to fly in
supersonic and transonic regimes in which the aerodynamic parameter values and behavior are difficult to predict
through computational fluid dynamics (CFD) and wind tunnel tests. Therefore in the framework of such a project two
kinds of problem arise. First of all, the large aerodynamic uncertainties call for early analyses aimed at estimating
the uncertainty ranges that still satisfy the requirements such as maneuverability to plan activities (such as changes
of the vehicle configuration or further wind tunnel tests) concerning possible uncertainty refinement. Moreover,
because guidance, navigation and control (GNC) design has the aim of guaranteeing robustness to all uncertainties
affecting the system and the mission (aerodynamic, mass and inertia, environmental, initial state, etc.), an effective
analysis approach is required for assessing final robustness and for identifying mission parameters (i.e. initial states
displacement, winds, etc.), which could be of major concern for the mission success.
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When dealing with robustness analysis of an uncertain system, the following key problem can be defined. Given
an uncertain system, a region defined in the uncertain parameter space and some properties or requirements to be
verified, we may estimate the actual region in the uncertain parameter space where the system robustly satisfies
the requirements (robustness analysis problem). The robustness analysis problem can be considered of paramount
importance for improving the system robustness to uncertainties because it gives an indication of critical areas in the
uncertainty space where the system design should be improved.

In the past years, several research activities have been performed in the field of robustness analysis with respect
to parametric uncertain systems, especially concerning robust stability and performance of linear feedback systems
(see [1] and [3] for a comprehensive discussion). The concept of multivariable stability margin, which represents
the largest perturbation (according to a given norm) still guaranteeing system’s stability, and structured singular
value [4,5] are introduced to deal with structured perturbations. In this setting all the uncertainties affecting the sys-
tem are arranged into canonical block diagonal feedback perturbations (M–� configuration). Regarding robustness
analysis with parametric uncertainty, in the last decades several methods have been developed (see [6] and [7]). These
methods address the problem of robustness analysis starting from the transfer function of an uncertain plant, never-
theless most of their results apply only in the case that the coefficients of the closed-loop characteristic polynomial
can be expressed as affine maps of the uncertain parameters, which is in general a restrictive hypothesis. In [8] an
algorithm is proposed that allows us to estimate a multidimensional uncertainty region in the parameters space in
which a given property (expressed through the inequality u(q) � γ ) is satisfied in the case that u(q) is a multi-affine
mapping of the uncertain parameters q. Therefore the common approaches to the robustness analysis only work with
linear time invariant (LTI) systems and with limited uncertainty structure. This dramatically limits application of the
above mentioned approaches to practical cases. The general case of nonlinear mapping is addressed in [9] and [10].
Although more efficient than the commonly used gridding techniques [1], this method suffers from the limitation of
having a complexity which is exponentially growing with the number of uncertain parameters.

Computational complexity is in fact an issue of major concern for all the methods presented above. Recent research
activities on this subject have shown that various robust control problems are NP-hard [11].

In view of these considerations, recently a new formulation of the robustness analysis problem has grown in
importance [12,13]. Instead of dealing with estimation of the actual robustness region, it may be more useful to
pursue a robustness analysis problem solution which guarantees that a certain property holds for “most” of the
uncertainty combinations, that is, a given property can be violated by a set of uncertainties having small probability
measure. Even if this change in problem formulation is not sufficient to make the robustness analysis problem simpler
(the probability of satisfying a given property may be very hard to compute because it requires the evaluation of
a multidimensional integral), it allows us to estimate the probability that a given property is satisfied by means of
randomized algorithms (RA) (see [14–18]). RA are algorithms that make some random choices during their execution
and they accomplish the robustness analysis, performing random extractions of uncertainty samples and using them
to achieve a probabilistic estimation of satisfaction of a given system property.

Although these algorithms overcome some limitations of classical robustness analysis methods, mainly the com-
putational complexity and the inapplicability to every system and every uncertainty structure, they mostly aim to find
the probabilistic counterpart of the multivariable robustness margin above mentioned previously. Nevertheless this
robustness indicator has the limitation of underestimating the system’s robustness because it evaluates how much the
uncertainty space can be expanded by the same factor in all directions still ensuring that a given property is satisfied.
Clearly removing this limitation may provide a less conservative estimation of the system’s robustness capabilities.
This problem is discussed in recent researches [19] aimed at providing a framework to allow for different bounds for
each uncertainty component. The concept of volumetric singular value (VSV) is introduced so that the multivariable
stability margin is defined as the maximum achievable volume in which stability is preserved. The authors argue that
structured singular value is a suboptimal solution compared with VSV because it can be viewed as the solution to
the problem of volume maximization with the geometric constraint that all the uncertainty bounds must be scaled
by the same factor.

Starting from the concept of VSV, in this paper a new algorithm is proposed that allows the problem of robustness
analysis to be solved. It relies on a probabilistic approach to inherit all the advantages previously described (reduced
complexity, applicability to all kind of systems, etc.), but unlike other approaches it looks for the whole region in the
uncertain parameter space satisfying the system’s requirements instead of computing only the robustness margin.
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In more detail, the algorithm aims to find the maximum volume hyper-rectangle in which a given system property
is satisfied with pre-assigned accuracy and confidence. The algorithm can be used for robustness analysis problems
applied to every system, even nonlinear time variant and for every requirement or property that can be evaluated
numerically or analytically. Furthermore, regarding the computational burden, it will be shown that it is polynomial
in the dimension of uncertainty space (i.e. it increases with polynomial law as the dimension of the uncertainty space
increases).

Therefore the algorithm is capable of overcoming the main limitations of the existing approaches to the robustness
analysis problem, namely:

• high degree of conservatism introduced with the concept of multivariable robustness margin discussed above
• inapplicability to nonLTI systems
• prohibitive computational complexity.
Nevertheless, as will be discussed in the following sections, the identified hyper-rectangle is not guaranteed to

be the absolute maximum volume hyper-rectangle but it is in general a suboptimal solution because it depends on
the shape of the initial uncertainty space. Furthermore it is worth to note that the problem of finding the maximum
volume hyper-rectangle provides a suboptimal solution itself, because in general this hyper-rectangle is included
in the actual region (that is not usually a hyper-rectangle) where an assigned system property is satisfied. The
computation of this region as well as the computation of the maximum volume hyper-rectangle can be performed
by means of deterministic techniques, but they require a high computational burden. On the contrary, as it will be
explained in the following sections, the computation of a suboptimal volume hyper-rectangle combined with the
use of the probabilistic approach allows a significant reduction of computational complexity if compared with other
deterministic techniques. Moreover it is worth to remark that the algorithm always provides a hyper-rectangle with
volume greater than or equal to the one obtained by scaling all the uncertainties by the same factor (as done for the
computation of the multivariable robustness margin), thus giving more information about the robustness capabilities
of the system under analysis.

The proposed algorithm has been successfully used in the framework of CIRA USV project, in particular, to
address the following two problems:

• maneuverability analysis for USV-FTB1 vehicle during early design phase
• robustness analysis of FTB1 flight control laws (FCL) to initial state displacements during the GNC verification

phase.
Maneuverability analysis made it possible to identify the critical flight envelope points where aerodynamic

database should be refined, because maneuverability requirement was not satisfied on the whole range of uncer-
tainty. Following the results provided by the proposed algorithm, further wind tunnel tests and CFD analyses have
been focused on the refinement of selected aerodynamic uncertainties in few critical flight envelope points, thus
drastically reducing the wind tunnel testing costs and time.

Robustness analysis of FTB1 FCL allowed easy identification of the subset of initial state uncertainty region still
guaranteeing the achievement of mission objectives, and these results have been used during the first FTB1 mission
to decide online whether the vehicle initial state was suitable for safely performing the flight.

The proposed algorithm’s effectiveness has been demonstrated by comparing the results with the deterministic
method [8–10] that finds the actual region in the uncertainty space where the system properties are verified. It will
be shown that even if the proposed algorithm provides a suboptimal solution, it guarantees a significant amount
of computational complexity reduction, which becomes more noticeable when the number of uncertain parameters
grows.

In Sec. II robustness analysis in a probabilistic setting is introduced and a detailed description of the proposed
algorithm is provided together with its advantages and limitations. In Sec. III applications for the above stated
robustness analysis problems are presented and finally in Sec. IV some brief concluding remarks are included.

II. Robustness Analysis in a Probabilistic Framework
Consider a system with uncertain parameters q =̂ (q1, q2, . . . , ql) ∈ Q ⊂ �l and given bounds |qi | � Ii for i =

1, 2, . . . , l. The random vector q has a multivariate probability density function (pdf) f (q) and its components
qiare assumed to be independent and can be viewed as deviations from the nominal value, so they are centered at
qi = 0. Moreover we can assume that Ii = 1, ∀i via an appropriate scaling without loss of generality. With these
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assumptions, the uncertainty region Q is the hypercube in the l-dimensional parameter space Q = I1 × I2 × · · · × Il

with Ii = [−1, +1], i = 1, 2, . . . , l.
Generally speaking, the problem of robustness analysis in the uncertain parameter space can be formulated as

follows. Given the uncertainty space Q, an uncertain system, a function of uncertain parameters u(q) defined in Q and
a generic system property expressed through the inequality u(q) � γ (where γ is an assigned threshold), determine
the robustness set Qgood = {q ∈ Q : u(q) � γ }. It is worth noting that the function u(q) is a generic function of
uncertain parameters (hereinafter called performance function), so it can be related to the system’s performances,
stability and to every property which can be expressed through the inequality u(q) � γ .

In the previous section we described the various approaches which tried to solve the above stated problem or to find
regions of pre-assigned shape included in Qgood. In this paper, we formulate the above problem in a probabilistic way,
that is, we find a set Qε where property u(q) � γ is probabilistically satisfied, i.e. Pr{u(q) � γ } � 1 − ε, q ∈ Qε.
Therefore we propose a probabilistic approach to find the maximum volume hyper-rectangle included in Qgood, that is

max
R̄∈�l

l∏
i=1

Ri

subject to (1)

R̄Q ⊆ Qgood ⊆ Q

where R̄
def=[R1, R2, . . . , Rl] and R̄Q

def= R1I1 × R2I2 × · · · × RlIl . It is worth noting that in this setting the rela-
tion R̄Q ⊆ Qgood is intended to be from a probabilistic point of view, i.e. R̄Q ⊆ Qgood ⇔ Pr{u(q) � γ } � 1 − ε,

q ∈ R̄Q.
The above stated problem is of great importance for the robustness analysis because finding the (maximum

volume) subset of the uncertainty space in which a system property is satisfied gives a direct measure of a system’s
robustness. For instance, in the case of a closed-loop system, we may evaluate the maximum capabilities of the
control algorithms to fulfill performance or stability by reacting to the system’s uncertainties.

A. System Property Verification
To solve the problem stated in the previous section, we need a way to evaluate if the system robustly verifies

the system’s property when the uncertainties q are allowed to vary in a generic set Q′ ⊆ Q ⊂ �l and are described
by the pdf f (q). An efficient method to accomplish the above analysis is to estimate the worst-case value of the
performance function u(q)

umax = max
q∈Q′ u(q) (2)

The estimation can be performed by means of a Monte Carlo sampling as follows

uN = max
i=1,2,...,N

u(q(i)) (3)

where q(i) are i.i.d. samples drawn in Q′ according to f (q). It can be shown [16,20] that if

N � ln(1/δ)

ln(1/1 − ε)
(4)

then

Pr{Pr{u(q) > uN } � ε} � 1 − δ (5)

Therefore if uN � γ , with a probability greater than 1 − δ the system property is probabilistically satisfied in Q′,
that is, Pr{u(q) � γ } � 1 − ε, q ∈ Q′.

It is worth noting that the above results are dependent on the pdf f (q) used to describe the random vector q.
Nevertheless f (q) may not be known a priori, so a question arises about which is the best choice for the pdf (see [21]
for further discussions). In this regard, we observe that the uniform pdf is widely used for the robustness analysis
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problem owing to its worst-case properties (see [22,23]). Nevertheless when a uniform sampling in a given region
is performed, the generated random samples are more likely to be concentrated on the surface of the region, if the
number of uncertain parameters is high [24]. Therefore a uniform pdf might not be the best choice when the points of
the uncertainty space having the value of the performance function greater than γ (i.e. the points which do not satisfy
the system’s property) are located far from the surface of the uncertainty region, because in this case the worst-case
value of Eq. (2) may be underestimated. Therefore a different pdf could be used, depending on the specific problem
to be solved.

In any case when we lack some a priori knowledge about the distribution of the non-compliant points in the
uncertainty space Q′ where the sampling is performed, the use of the uniform pdf allows us to state that, with
probability greater than 1 − δ, the volume of the “non compliant” set Qγ = {q ∈ Q′ : u(q) > γ } is at most ε times
the volume of Q′ (see [23]), that is

Pr{vol(Qγ ) � εvol(Q′)} � 1 − δ (6)

even if the probability that the desired property is not satisfied, i.e. Pr{u(q) > γ }, q ∈ Q′ may be greater than ε

depending on the actual probability distribution of the random vector q.

B. Algorithm Description
Once the uncertainty distribution to be used is defined and a way to check if a prespecified property is verified

in a given uncertainty region, it is possible to describe the steps towards the search of the maximum volume hyper-
rectangle included in the unknown region Qgood. The proposed algorithm is based on the adaptive random search
technique detailed below.

In the first step we find a solution for the following simplified robustness analysis problem. Let us define the
subspace Qr = rQ with r ∈ [0, 1]. The aim of the first step is finding the probabilistic robustness margin defined
as follows

rmax(ε) =̂ sup{r : Pr{u(q) � γ } � 1 − ε, q ∈ Qr} (7)

This can be viewed as the robustness analysis problem (1) in the special case when the set Qgood has the same
shape of Q. This formulation is useful because it allows the l-dimensional problem of Eq. (1) to be reduced into a
one-parameter search problem so to reduce the computational charge.

The problem can be solved by means of a worst-case estimation (see Eq. (3)) as well. In fact to find the largest
r such that Qr = rQ is (probabilistically) included in Qgood, we can simply find the largest r such that uN � γ . In
fact if N is chosen according to Eq. (4), then with a confidence greater than 1 − δ, u(q) will be less than uN (i.e. the
property will be satisfied) with probability greater than 1 − ε for q ∈ rQ (see inequality (5)).

Therefore starting from r = 1, the algorithm explores a subset rQ of the uncertainty space Q by generating
N random samples in this set and evaluating if the performance requirement u(q(i)) � γ is satisfied; whenever a
sample vector violating the property is found, the radius r is reduced such that the new radius is the largest radius,
which does not include the noncompliant dispersed point. Therefore this simplified algorithm (hereafter called
Algorithm 1) makes it possible for us to find the maximum set included in Qgood having the same shape of the
uncertainty hypercube Q and satisfying the system property, that is

Q
opt
0 = rmaxI1 × rmaxI2 × · · · × rmaxIl ⊆ Qgood ⊂ �l (8)

Finally Algorithm 1 can be also used to scale only m bounds (m < l) of the uncertainty space Q, that is, to scale
the set Q̂ ⊂ �m and letting the remaining l − m components to vary in a fixed range Q̃ ⊂ �l−m. As it will be shown,
this is useful when computing a hyper-rectangle included in Qgood, which is not constrained to have the same shape
of the initial uncertainty space Q. A meta-code of the Algorithm 1 is given below.

Algorithm 1.
Need to specify the number of samples N , f (q), u (q), γ , the sets Q̂(to be scaled) and Q̃ (fixed set).

1. Initialize rmax = 1.
2. Let k = 1.
3. Generate a vector sample q(k) according to f (q) in Q̃ × rmaxQ̂ ⊂ �l .
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4. If system’s property is not satisfied, that is, if u
(
q(k)

)
> γ , then let rmax = max

i=1,2,...,l

∣∣∣q(k)
i

∣∣∣ and go to step 2

else if k < N then let k = k + 1and go to step 3.
5. End, return the variable rmax.

It is worth noting that if Q̂ = Q and Q̃ = [] all the components of the uncertainty hypercube are scaled in the
same way and Q

opt
0 of Eq. (8) is obtained.

Obviously finding a solution to the robustness analysis problem which accounts for different bounds for each com-
ponent qi could provide more information about the robustness of the system under analysis. As already mentioned,
to address the more general problem of finding a hyper-rectangle included in the set Qgood which is not constrained
to have the same shape of Q, further steps are needed. To keep the problem complexity low, we may compute a
larger hyper-rectangle starting from Q

opt
0 by iteratively repeating the Algorithm 1 on uncertainty space of reduced

dimension, thus obtaining the following Algorithm 2.

Algorithm 2.
Need to specify the starting scale factor R, the number of samples N , f (q), u(q), γ , the set Q̄ = Ik1 × Ik2 × · · · ×
Ikh

⊂ �h (to be scaled) and Q′ ⊂ �l−h (fixed set).
1. If h > 1

For i = 1, 2, . . . , h

Let rki
= R and compute rmax using Algorithm 1 with Q̂ = Q̄ − {Iki

} def= Ik1 × · · · × Iki−1 × Iki+1 × · · · ×
Ikh

⊂ �h−1, Q̃ = Q′ × rki
Iki

⊂ �l−(h−1), N , f (q), u(q), γ .
Let rmax

i = rmax

end
else return R

2. Take the index n such that rmax
n = maxi=1,2,...,h rmax

i .
3. End, return the index kn and rmax

n .

If h = l Algorithm 2 is applied to the whole starting uncertainty hypercube, that is Q̄ = Q, Q′ = [] with R given
by Algorithm 1 with Q̂ = Q and Q̃ = [], that is R = rmax. Therefore the ith bound of Q is set at rmax and Algorithm 1
is repeated on the remaining l − 1 bounds, that is, on the set Qi = I1 × · · · × Ii−1 × Ii+1 × · · · × Il ⊂ �l−1. Thus
for each component qi a radius rmax

i � rmaxis found (through Algorithm 1) such that the (larger) hyper-rectangle

Qrmax
i

= rmax
i I1 × · · · × rmax

i Ii−1 × rmaxIi × rmax
i Ii+1 × · · · × rmax

i Il ⊂ �l (9)

is (probabilistically) included in Qgood. Algorithm 1 is iteratively repeated for i = 1, 2, . . . , l, and the uncertainty
bound In allowing the largest expansion (in the remaining l − 1 dimension) rmax

n = maxi r
max
i is selected and finally

fixed at rmax, so the updated solution after the first iteration of Algorithm 2 will be

Qopt = rmax
n I1 × · · · × rmax

n In−1 × rmaxIn × rmax
n In+1 × · · · × rmax

n Il ⊆ Qgood ⊂ �l (10)

Algorithm 2 is now iteratively used to determine the bounds of the other l − 1 uncertainty components, that
is I1, I2, . . . In−1, In+1, . . . Il and compute the final optimum hyper-rectangle. In fact, at each step the solution
previously found is refined to achieve a larger hyper-rectangle. In detail, starting from Qopt in Eq. (10), Algorithm 2
is repeated on all the bounds except the nth. Hence for each j = 1, 2, . . . , n − 1, n + 1, . . . , l the j th bound of

Q̄ = Q − {In} def= I1 × · · · × In−1 × In+1 × · · · × Il ⊂ �l−1 is set at rmax
n and a new radius rmax

j � rmax
n � rmax is

computed using Algorithm 1. The “best” radius rmax
k = maxj rmax

j is selected as done before. Therefore the updated
solution after two iterations of Algorithm 2 will be

Qopt = rmax
k I1 × · · · × rmax

k Ik−1 × rmax
n Ik × rmax

k Ik+1 × · · · × rmax
k In−1 × rmaxIn × rmax

k In+1

× · · · × rmax
k Il ⊆ Qgood ⊂ �l (11)

In the subsequent iterations, Algorithm 2 is repeated on the set Q̄ = Q − {Ik × In} def= I1 × · · · × Ik−1 × Ik+1 ×
· · · × In−1 × In+1 × · · · × Il ⊂ �l−2 and so on until all the bounds of the uncertainty space are fixed. It is worth
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noting that at each iteration the updated solution is a suboptimum of problem (1). This solution is obtained solving a
specific maximization problem and it has, by construction, a greater volume than the solution found in the previous
step. In this way the final solution Q

opt
fin will satisfy the following inequality

vol(Qopt
fin ) � vol(Qopt

0 ) (12)

so Q
opt
0 is a lower bound of the suboptimal solution computed by the algorithm. In conclusion the whole procedure

is described by the following meta-code:

Algorithm 3 (main).
Need to specify the starting uncertainty hypercube Q ⊂ �l , the number of samples N, f (q), u(q), γ .

1. Let h = l, Q̄ = Q, Q′ = [], Q̃ = [].
2. Compute rmaxusing Algorithm 1 with Q̂ = Q, Q̃, N , f (q), u(q), ?
3. Let R = rmax.
4. While h > 1
5. Compute kn and rmax

n using Algorithm 2 with Q̄, Q′, R, N , f (q), u (q), γ .
6. Let R

kn
= R, R = rmax

n , Q̄ = Q̄ − {
Ikn

} ⊂ �h−1, Q′ = Rkn
I kn

× Q′ ⊂ �l−(h−1)

7. Let h = h − 1
8. end
9. Return the set Q

opt
fin = Q′ × RQ̄.

As mentioned previously, the relationship between Q
opt
fin and Qgood is to be intended in a probabilistic sense, that

is, the following inequality holds

Pr{Pr{u(q) � γ } � 1 − ε, q ∈ Q
opt
fin } � 1 − δ (13)

that is, with probability greater than 1 − δ the set Q
opt
fin will have a probability greater than 1 − ε of being compliant

with the required system property.

C. Advantages and Limitations
The main advantage of the proposed algorithm is its reduced computational charge. To address the complexity

issue, the following preliminary considerations shall be made:
• Algorithm 1 has a computational complexity, which does not depend on the number of uncertain parameters l.
• During the execution of the proposed algorithm, Algorithm 1 is executed a number of times M = ∑l

i=1 i =
l(l + 1)/2 which is polynomial in the dimension of uncertainty space.

In view of these considerations, we argue that the proposed algorithm has a complexity growing polynomial with
the dimension of the uncertainty space. This result dramatically reduces the computational burden of the proposed
algorithm compared with deterministic techniques. Furthermore it is worth noting that the algorithm can be slightly
modified by treating the uncertainty space Q as a space of dimension 2l, that is, Q = I1 × Ī1 × I2 × Ī2 · · · × Il × Īl

with Ii = [−1, 0], Īi = [0, +1], i = 1, 2, . . . , l. In this way we can better account for those sets Qgood that are not
symmetric around the nominal value with a computational complexity still polynomial, because it is sufficient to
replace l with 2l in the above formula. Finally another significant advantage concerns the algorithm applicability to
any system and any property to be verified.

Regarding algorithm limitations, it shall be noted that the above described procedure leads to a suboptimal
solution of problem (1). In fact, as previously explained, at each step the solution is obtained maximizing the volume
of admissible uncertainties while retaining the shape of the initial uncertainty space.

For this reason the solution will be suboptimal because of the dependence of the solution on the shape of the
initial uncertainty space. In any case we obtain a solution whose volume is always greater or equal than that of the
lower bound Q

opt
0 in Eq. (7) as explained before, that is

vol(Qopt
0 ) � vol(Qopt

fin ) � vol(Qopt
true) (14)

where Q
opt
true is the solution of the problem stated in Eq. (1). However as will be shown in the following sections, the

suboptimality of the solution is counteracted by a significant saving of the computational effort.
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III. Application to USV FTB 1 System Robustness Analysis
To fulfill the first part of CIRA USV program, three flight missions were planned and they will be performed

by a couple of identical FTBs (FTB1 configuration) being designed and manufactured to support the USV program
execution. In this section two examples of robustness analyses carried out during the development of USV program
will be provided, in particular with reference to the first mission named DTFT (dropped transonic flight test) 1.

DTFT1 has been successfully carried out on February 2007 in Sardinia, Italy. The main aims of this mission were
the investigation of the vehicle aerodynamic behavior and in-flight validation of flight control system in the transonic
flight regime. In DTFT1 the FTB1 vehicle was dropped from an altitude of about 20 km and performed a controlled
flight to reach a Mach value of 1.05.

A. Maneuverability Analysis for USV FTB 1 Vehicle
The proposed algorithm was used to perform an open-loop assessment of the USV-FTB1 vehicle robust maneuver-

ability. The maneuverability property accounts for the possibility to change the flight trajectory and vehicle attitude
during all phases of the flight. This property can be investigated by verifying that the aerodynamic rotational moment
of the vehicle, over all the foreseen flight conditions, changes its sign while moving the relevant control surfaces
within their allowable ranges. Specifically, the position of the elevons (that are deputed for controlling the longitu-
dinal flight) for which the rotational moment changes its sign shall be sufficiently far from the end of travel limits
(maneuverability margin). In our case, the elevons’ nominal travel range was (±20 deg) and the minimum allowable
maneuverability margin was fixed to 25% of the elevons’ nominal range. In this way, in the worst case, the control
system could always use the 25% of the elevons’ travel range, to change the current attitude.

In the early design phase of the USV project, a preliminary aerodynamic database was available, which provided
the global longitudinal aerodynamic coefficients for different values of angle of attack α, elevons deflection δe, Mach
number M and Reynolds number Re. All the aerodynamic coefficients were considered as independent variables
and defined by a most likely value (nominal value) and an uncertainty range. The development of the aerodynamic
database is detailed in [25]. The primary sources of data were represented by wind tunnel tests, mainly executed
in transonic regime, according to its particular interest for the DTFT missions. CFD and simplified engineering
methods were used to cross-check wind tunnel data. Simplified methods such as vortex lattice method, panel method
and DATCOM were also employed to fill gaps in wind tunnel data and to allow the extension of the database
to low subsonic regime. Uncertainty on nominal values was estimated taking into account random experimental
errors (repeatability), systematic experimental errors (known and not removable errors) and CFD errors (effect of
computational grid, convergence, level of turbulence modeling, boundary conditions).

Maneuverability analysis results, obtained by applying a tool (named PROBAN) implementing the proposed
algorithm to the preliminary database in the early phase of the project, made it possible to identify the flight envelope
points where aerodynamic database should be refined, because maneuverability requirement was not satisfied on
the whole range of uncertainty. Moreover, in such flight envelope points, PROBAN identified which aerodynamic
coefficient was characterized by a critical uncertainty, that should be reduced, and which was the amount of uncertainty
reduction required to guarantee maneuverability. Following the results provided by PROBAN, further wind tunnel
tests and CFD analyses were executed, only focusing on the reduction of critical uncertainties. Thus the use of
PROBAN, driving the aerodynamic database refinement process, allowed the maneuverability requirement to be
satisfied while dramatically minimize the wind tunnel testing time.

For a fixed flight envelope point, identified by the triple (ᾱ, M̄, Re), the formulation of longitudinal rotational
maneuverability problem concerns with the solution (with respect to the elevons’ position δe) of the following
constrained nonlinear relation

Cm(ᾱ, M̄, Re, δe, �Cm, �CL, �CD) = 0 with |δe| � δe_m (15)

where Cm is the total pitching moment coefficient evaluated using the centre of gravity (CoG) as reference pole,
�Cm,�CL and �CD are the aerodynamic uncertainties (related to pitching moment, lift and drag coefficients respec-
tively) and δe_m is the maximum elevons’ deflection deputed to trim the vehicle (for FTB1 it was δe_m = 15 deg).
For the FTB1 vehicle, the aerodynamic database provided the dependence of Cm on δe in tabular nonlinear form,

299



MORANI, CORRARO, AND VITALE

whereas the aerodynamic uncertainties were defined using the nose of the vehicle as a reference pole. For that reason
the global pitching moment with respect to the CoG was also dependent on �CL and �CD.

If for each triple (�Cm, �CL, �CD) ∈ Q it exists a δ̄e that satisfies Eq. (15), then the vehicle is maneuverable in
the examined flight envelope point. Therefore for what concerns this case study, the property to be satisfied by the
system is expressed through the inequality u(q) � γ , where

u(q) =
{

|δ̄e| if ∃δ̄e : |δ̄e| � δlim, Cm = 0

δlim otherwise
(16)

q = [�CD, �CL, �Cm] is the uncertain vector described by the pdf f (q), γ = δe_m = 15 deg and δlim = 20 deg is
the elevons’ nominal travel range as previously stated.

In this section we report the results of the maneuverability analysis for the flight envelope point identified by the
triple ᾱ = 15◦, M̄ = 0.96, Re = 9 · 106. The uncertainty space, provided by the preliminary aerodynamic database,
was the hyper-rectangle

Q = [−0.055, 0.055] × [−0.086, 0.086] × [−0.137, 0.137] (17)

This is an input for the maneuverability analysis, being the uncertainty ranges on the global aerodynamic coeffi-
cients associated by the aerodynamic database to the examined flight envelope point. The hyper-rectangle found by
PROBAN was instead

Q
opt
fin = [−0.055, 0.055] × [−0.086, 0.086] × [−0.02, 0.137] (18)

To evaluate the effectiveness of the results obtained using PROBAN, we have also estimated the allowable
aerodynamic region Qgood by using the deterministic algorithm PARAN developed by the authors for the same
purposes (see [8–10] for details). This algorithm is based on vertices analysis and region bisection techniques. It
finds the set where the required property holds by exploring the uncertainty space up to a desired resolution. The latter
is related to the maximum number of bisection to carry out with respect to the initial uncertainty space; for example
a resolution ρ = 2−3 means that the smallest subset of the uncertainty space in which the property is checked has a
volume equal to (1/8)l times the volume of the initial space.

In Fig. 1 the three-dimensional (3D) allowable uncertainty region evaluated by PARAN with ρ = 2−6 is shown. The
nominal point is (0, 0, 0) and the axis ranges correspond to the preliminary aerodynamic uncertainty ranges. In Fig. 2

Fig. 1 Set Qgood computed by PARAN.
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Fig. 2 Hyper-rectangle Q
opt
fin computed by PROBAN.

the allowable set estimated by PROBAN is shown; in particular the figure shows a hyper-rectangle (probabilistically)
included in the allowable uncertainties region Qgood. It is worth noting that this hyper-rectangle is capable of giving
a useful indication about the behavior of the uncertainties, that is, which of the uncertainties are more critical (i.e.
require a relevant reduction by means of further wind tunnel tests and CFD analyses). In particular for what concerns
FTB1 maneuverability, it is worth to note that the most critical uncertainty was related to the pitching moment
coefficient Cm.

Because the number of random samples used for the above analysis was N = 1057, we can conclude (see Eq. (4))
that the results provided by PROBAN are valid with an accuracy ε = 0.005 and a confidence δ = 0.005, that is, with
a probability greater than 0.995 (1 − δ) the maneuverability is (probabilistically) guaranteed in Q

opt
fin , that is

Pr{u(q) � γ } � 1 − ε, q ∈ Q
opt
fin (19)

with 1 − ε = 0.995.
As mentioned previously, a question of great importance is the choice of the pdf to be used to perform the Monte

Carlo sampling required by the probabilistic algorithm. Regarding the application discussed in this section a uniform
pdf was used according to the considerations made in Sec. II.

Finally it is worth noting that the probabilistic algorithm is not capable of finding the whole admissible uncer-
tainty space Qgood because it tries to find the maximum hyper-rectangle included in it. This limitation, however,
is counteracted by a significantly better computational efficiency. In fact, the probabilistic algorithm guarantees a
noticeable reduction of computational effort. To address the computational complexity of PROBAN, a compari-
son with PARAN has been carried out with respect to the computation times. Moreover the uncertainties on the
CoG position have also been added, in particular z-position �zcg and x-position �xcg CoG displacement so to
increase the problem size. In particular for l = 4 the uncertain vector is q = [�CD, �CL, �Cm, �zcg] and for
l = 5 q = [�CD, �CL, �Cm, �zcg, �xcg]. In Tables 1 and Table 2 times of execution of PROBAN are reported
together with a comparison with those obtained using PARAN. They refer to simulations performed with a Pentium
4, 3.2 GHz computer with 1 Gigabyte RAM. The dimensions of uncertainty space l and the resolution ρ are reported
for the deterministic tool while for the probabilistic tool the confidence δ and the accuracy ε are given.

As we can see from the tables, the deterministic tool has a computational burden that quickly increases with the
adaptive grid resolution and the number of uncertain parameters. On the contrary, the probabilistic tool PROBAN
has a computational burden that does not dramatically increase by improving accuracy and confidence and when
the number of uncertain parameters grows. In particular we can note that just for l = 4, the deterministic algorithm
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Table 1 Computational complexity (probabilistic tool)

l ε δ Time of execution, s

3 0.005 0.005 346
3 0.0025 0.0025 1009
3 0.001 0.001 2081
4 0.005 0.005 480
5 0.005 0.005 686

Table 2 Computational complexity (deterministic tool)

l ρ Time of execution, s

3 2−4 220
3 2−5 882
3 2−6 3651
4 2−4 7540
5 2−3 27309

becomes hard to handle from a computational point of view (even with a lower resolution ρ) whereas the probabilistic
one allows the computation times to be drastically reduced.

B. Robustness Analysis of FTB 1 FCL to the Initial State Displacement
As stated, DTFT1 mission profile was based on a drop of the FTB1 vehicle from a stratospheric balloon at

an altitude between 19 km and 21 km inside a specific target area (safe release zone), lifting off from a launch
base located in Arbatax, Sardinia, Italy. Because during the ascent trajectory, the FTB 1 vehicle was subject to a
significant rotational motion, the initial angular velocity as well as initial attitude were uncertain. Moreover the drop
altitude was not known exactly. As is well known, initial state displacement may heavily influence the overall vehicle
trajectory as well as the control system performances such that the mission goals might not be achieved. In view
of these considerations, it would be of paramount importance to evaluate the allowable initial state uncertainty still
guaranteeing the compliance with system requirements.

As explained before, a robustness analysis has been carried out during the GNC verification phase with the
objective of verifying if the control system’s performances were achieved in terms of tracking error of angle of
attack, sideslip angle, and roll angle despite the initial state displacement in terms of Euler angles, angular velocities
and altitude. Therefore for what concerns this case study, the property to be satisfied by the system is expressed

through the inequality u(q) � γ where u(q) =
√

1
T

∫ T
0 (y(t, q) − yref(t))2 dt is the rms (root mean square) tracking

error, y is the controlled variable, q = [φ0, θ0, ψ0, p0, q0, r0, h0] are the uncertain parameters, and γ is the maximum
acceptable tracking error (defined by mission requirements).

The analysis made it possible easily to identify the subset of initial state uncertainties still guaranteeing the
achievement of mission objectives, hence it has been used during DTFT1 mission to decide online whether the
vehicle could be safely released depending on its current attitude, angular velocity, and altitude.

Starting from a preliminary analysis of the DTFT1 ascent phase, the following uncertainty range of FTB 1 initial
state was selected

Q = [−180, 180]deg × [−90, −82.5]deg × [−180, 180]deg × [−5, 5]deg/s × [−3.5, 3.5]deg/s

× [−1.5, 1.5]deg/s × [19000, 21000]m (20)

for φ0, θ0, ψ0, p0, q0, r0, h0 respectively. The hyper-rectangle found by PROBAN was

Q
opt
fin = [−120, 120]deg × [−90, −86]deg × [−180, 155]deg × [−3.3, 5]deg/s × [−3.5, 3.5]deg/s

× [−1.5, 1.5]deg/s × [19000, 21000]m (21)
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Because the number of random samples used for the above analysis was N = 1057, we can conclude (see Eq. (4))
that the results provided by PROBAN are valid with an accuracy ε = 0.005 and a confidence δ = 0.005, that is, with
a probability greater than 0.995 (1 − δ) the success of the mission was (probabilistically) guaranteed in Q

opt
fin , that is

Pr{u(q) � γ } � 1 − ε, q ∈ Q
opt
fin (22)

with 1 − ε = 0.995.
Concerning the choice of the pdf used to perform the random sampling, the same considerations of Sec. III.A

hold.

Fig. 3 Set Qgood computed by PARAN.

Fig. 4 Hyper-rectangle Q
opt
fin computed by PROBAN.
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Table 3 Computational complexity (probabilistic tool)

l ε δ Time of execution, s

3 0.005 0.005 90
4 0.005 0.005 159
5 0.005 0.005 183
6 0.005 0.005 215
7 0.005 0.005 782

Table 4 Computational complexity (deterministic tool)

l ρ Time of execution, s

3 2−5 258
4 2−5 17201
5 2−3 7404
6 2−2 2018
7 2−2 15269

Finally to make a comparison with the robustness analysis carried out by the deterministic tool PARAN, we
considered a simplified 3D problem. In fact, the results of the deterministic tool cannot be presented in compact form
as in Eq. (21) nor they can be plotted for problems with more than 3D uncertainties. Therefore we considered the
uncertainties on the vehicle attitude, letting the remaining variables assume their nominal value, thus obtaining the
following initial uncertainty space

Q = [−180, 180]deg × [−90, −82.5]deg × [−180, 180]deg (23)

In Fig. 3 and Fig. 4, the subsets found by PARAN with resolution ρ = 2−6 and PROBAN with N = 1057 are
depicted respectively. It is worth noting that even if the probabilistic algorithm is not capable of finding the whole
admissible uncertainty space, it guarantees a significantly better computational efficiency. In this regard, in Table 3
and Table 4, the times of execution of PROBAN and PARAN are reported respectively for different dimensions of the
uncertainty space. In particular for l = 3 the uncertain vector is q = [φ0, θ0, ψ0], for l = 4 q = [φ0, θ0, ψ0, p0], for
l = 5 q = [φ0, θ0, ψ0, p0, q0], etc. The results refer to simulations performed with a Pentium 4 3.2 GHz computer
with 1 Gigabyte RAM.

IV. Conclusion
A new algorithm for the analysis of an uncertain system in a probabilistic framework has been proposed. It identifies

a hyper-rectangle included in the uncertainty parameter space in which a given property is satisfied with pre-assigned
accuracy and confidence. The identified hyper-rectangle is suboptimal in the sense that the procedure finds a local
maximum volume hyper-rectangle included in the actual uncertainty region where the property is satisfied.

The proposed algorithm overcomes the main limitations of the common approaches to the robustness analysis
problem, namely the computational complexity, the inapplicability to every kind of system, and the conservatism of
the solution.

In the paper two practical applications have been described. The first is the identification (in the early design
phase of the project) of the flight envelope points where the preliminary aerodynamic database should be refined
(and the amount of uncertainty reduction required) by means of further wind tunnel tests and CFD analyses, because
maneuverability was not guaranteed on the whole preliminary range of uncertainty. The second is the estimation of
FTB1 drop initial state displacement for a safe flight execution. Moreover a comparison with the results obtained by
a similar tool based on a deterministic approach to the robustness analysis problem has been made. Although a small
part of the admissible uncertainty space was lost when the proposed algorithm was used (with respect to the result
of the deterministic tool), this drawback is widely compensated for by the reduction of the computational burden
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that is polynomial increasing with the dimension of the uncertainty space. Moreover, the presented results clearly
demonstrate that the proposed algorithm can deal with every type of systems and property to be verified as well as
with every uncertainty structure.

Comparing the above features with similar tools and current industrial practice, we can conclude that the algorithm
is very effective in every application where it is necessary to verify or, more generally, to analyze the performance
of a highly uncertain system.
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